
Even-André Karlsson

Traceability in an Agile

process

© Addalot Consulting AB - All rights reserved

Content

 Background

 Connections to Safety

 Approach

 Technicalities

- Requirements structure

- Architecture and design

- Code and unit test

- Test cases

- Change requests

 Experiences

 Tomorrow’s workshop:

- Examples

- Special cases

- Detailed discussion on fulfillment of ASPICE requirements

2

© Addalot Consulting AB - All rights reserved

Background

Customer

 wanted to achieve ASPICE compliance

 had already a working agile process

Can we implement traceability in an agile way?

Automotive SPICE has very high requirements on traceability:

3

© Addalot Consulting AB - All rights reserved

Connections to Safety

 The Safety Standards also require traceability, example from 26262 (5)

4

© Addalot Consulting AB - All rights reserved

Connection to Safety (2)

5

 26262 – Section 8

© Addalot Consulting AB - All rights reserved

General idea

1. Requirements are hierarchically structured in

- Personas

- Journeys

- Epics

- Stories

2. Stories are broken down into tasks during sprint planning

3. Each task is implemented separately

4. We are versioning all our artifacts, so by using the Task ID as a check in

comment we will get some traceability

Can we use this, and will this be enough?

Will it be bidirectional?

6

© Addalot Consulting AB - All rights reserved

Development context

 No advanced tools: Word, Excel, Code

 Good CM systems both for documents (Alfresco) and code (SVN)

 Only Software, i.e. No System/Software level

 Functional testing is only done on total System/Software level per sprint

 Reasonably small products, i.e. teams of 6-8 people, but complete

responsiblity

7

© Addalot Consulting AB - All rights reserved

Requirements and planning

8

 Requirements structure

- Personas

- Journeys

- Epics

- Stories

- Tasks (these are implemented)

 The Product backlog is maintained throughout the life time of the product

 When we start a sprint we record which Stories are part of this sprint, i.e.

add (R1.S4 = Release 1 Sprint 4) in the implementation column.

- Note that a story can be implemented over several Sprints, then we have several

references.

- Check in the Product Backlog in Alfresco again with Commit comment “Sprint R1.S4

planning”.

- Updated at the end of the sprint if needed.

One Excel

document that

is kept updated

One Word document

per sprint

Product Backlog

Sprint planning

© Addalot Consulting AB - All rights reserved

Detailed cases

 ”System” requirements

- Added a new Persona: The Architect

 Changing stories and tasks in later releases: CR part

 Handling versions in Excel : CR part

 TaskID format and which tasks to track

- Only coding tasks are used for tracking, even if test and documentation tasks are

used in planning

9

© Addalot Consulting AB - All rights reserved

Architecture

 Tasks requiring architecture updates are identified during sprint planning

- Not all stories and tasks have architectural impacts

 Changes are done per task to the Word architecture document

Keep track changes always on (except when updating Word admin content)

1. Check out

2. Accept all previous changes

3. Do the technical changes

4. Use Word Index function every time a unit is mentioned

- Index is used for backwards traceability from components to architecture

- Also index components used in diagrams, e.g. Object, Sequence…

- All components shall be mentioned in architecture

5. Check in with Task ID in comment

This solves traceability from requirements to architecture

What about from architecture to requirements? No blame function in Word 

 We have decided to do this indirectly:

- Details and example for tomorrow

10

Req Code

Arch

© Addalot Consulting AB - All rights reserved

Architecture

 Traceability between architecture and code

- All modules are described in architecture

- Use of Index ensures that we have bidirectional traceability

- Modules used in pictures must be explicitly indexed (if not mentioned in the text explaining the

component (then they are indexed in the text).

 What to minimally cover in the architecture document?

- Already specified in ASPICE

- When we add the functionality we update the architecture

- Can of course have design/spike documents on the side before we introduce it “for real”

 Traceability from architecture back to requirements

- We do not have any “blame” function in Word, so we can not point to a piece of text and ask

where it come from  Can quite easily be implemented….

- But we can find all changes to a module in the module (task)

- Then we can find which of these had architecture impact, and find the changes

- Non functional aspects of the architecture are more complex. One approach here is explicitly

add tasks impacting these chapters in the architecture document (not done yet)

 Deep architectural changes

- Do the changes in a separate document, and check it in with the or new functional task ID’s

11

© Addalot Consulting AB - All rights reserved

Code

 Code and unit test cases are in SVN

 Changes are done per task and checked in with task ID

 To find code impacted by a requirement is just to search the commit

comments

 We can use the blame function to find the latest check in that changed any

line, i.e. the task => the requirement

 If we go to that version in we can go further back in time

12

© Addalot Consulting AB - All rights reserved

Code

 Code refactoring

- Simple, e.g. add a parameter to a function

1. For a new function: Use the new function task, but add a note in the check-in comment that this is an

addition, so we know we have to go further back in history if we want the full story

(the blame function could be extended to find all check in’s impacting a line)

2. If an improvement of the original functionality: use the old task id. That is easily found in by the blame.

- Complex, i.e. destructive

- Find the functionalities originally requiring the code (blame). This is a good exercise to understand what we

need to retest.

- Do the restructuring outside

- Check in the new code in pieces with the old task ID’s (note restructuring in the commit comment)

 Splitting files

- Use the copy file function in SVN, that will also copy the history

- Remove the superfluous parts from each file

 Handling defects

- When you have found the line to change (if you know which functionality it is related to the Task

ID can help you find it.)

- Find the original task ID that created the faulty code (blame)

- It can be that the task modifying the code has nothing to do with the faulty functionality, i.e. we have

assumed something that did not work as we thought, or someone has changed something that we relied on

- Check in the change with the correct task ID

13

© Addalot Consulting AB - All rights reserved

Test cases

 Test cases are written in Excel and executed per sprint

 We mark explicitly which task it comes from in a column

 Test results are recorded in the same Excel sheet

 Sprint test cases are moved to a total test sheet

 For regression test sprint test cases are selected from the total test sheet to

the sprint test sheet.

 In the main sheet we keep one column per sprint to get an overview of what

we have tested when

14

© Addalot Consulting AB - All rights reserved

Test cases

 Updating test cases

- Since test cases are local to sprints, we will just copy and update the test case for a

new sprint.

- In the overall test case listing we will keep two versions of the test case, each

belonging to it’s own sprint(s).

 Examples: see next slide

15

© Addalot Consulting AB - All rights reserved

Change requests

 Change requests are implemented as changes to the requirements

 A new version of the requirement document is checked in with new or

updated Stories

 The CR is explicitly recorded in a column

 The change request ID(s) is used as the check in comment

 New stories are no problem, as their implementation will be traces as any

other not yet implemented story

 Updated stories: For workshop

16

© Addalot Consulting AB - All rights reserved

Change requests: Updated stories

 New version of the story is created in the Excel sheet (new line, as the old

story is still implemented in the previous sprint/release).

 Two cases:

- Just added tasks:

- The story is reintroduced in a new sprint planning document with both new and old version,

and explaining the difference.

- New tasks are implemented. In the check in comment we need to add that these belong to the

new version of the story

- Changed tasks. Similar as above, but we reuse the old task ID. Check in’s area

marked that they belong to the new version of the task.

- Note that both old (still valid as well as overwritten) and new check-ins related to task will

come up when we search for the task ID

- Update the old sprint planning document with information that the story/tasks are

updated in the new sprint planning.

 Note: A CR is “Completed” when the Release Planning document is updated.

We will then trace the change through the new or changed stories or tasks.

17

© Addalot Consulting AB - All rights reserved

Experience

 Initially quite skeptical – will be a lot of work 

 Turned out to be quite simple – need to be meticulous, but each step is

quite simple and requires little extra effort

 Also helpful in the normal work, i.e. not only overhead 

- We can see why we changed things

- Good to select regression test cases

- SVN blame function very useful

- Would be good with similar support

in Word!

 Still open:

- Will we be able to handle large

restructurings?

- Will this be practical after 5 years?

18

© Addalot Consulting AB - All rights reserved

Comparing to overall ASPICE model

 ASPICE assumes a system level and SW

level of both requirements and

architecture – we only have a

hierarchical breakdown

 ASPICE assumes Detailed design and

Unit Construction – we have arch and

doxygen and code

 ASPICE assumes different verification

steps:

- Unit test - OK

- Software Integration test

- Software Qualification test

- System Integration test

- System Qualification test

19

© Addalot Consulting AB - All rights reserved

ASPICE traceability

20

Weak links, all because of lack of

blame function in Word 

Possible solution: Store pure text version in

SVN (automatically) for each check in 

Index

© Addalot Consulting AB - All rights reserved

Ideal blame - historical

 When hoovering over a line we would like to see the whole history, e.g.:

 Red text is new, Blue is unchanged and strikethrough is removed

21

Check-in 4 Line content

Check-in 8 Line content with change1

Check-in 12 Line content with change1 and change2

Check-in 20 Line content with change1, change3 and change2

Check-in 23 Line content with change1, update4 change3 and change2

© Addalot Consulting AB - All rights reserved

Compared to ASPICE requirements, SYS1-3

 Requirements Elicitation SYS.1.BP1: Obtain stakeholder requirements and

requests.

- NOTE 3: The information needed to keep traceability for each customer requirement has to be

gathered and documented.

 System Requirements Analysis SYS.2.BP6: Establish bidirectional traceability.

Establish bidirectional traceability between stakeholder requirements and system

requirements. [OUTCOME 6]

 System Architectural Design SYS.3.BP6: Establish bidirectional traceability.

Establish bidirectional traceability between system requirements and elements of the

system architectural design. [OUTCOME 5]

- NOTE 4: Bidirectional traceability covers allocation of system requirements to the elements of

the system architectural design.

- NOTE 5: Bidirectional traceability supports coverage, consistency and impact analysis.

22

© Addalot Consulting AB - All rights reserved

Questions/comments, SYS1-3

 Do we have a System and SW level?

 Can/must we map persona and journeys to customers?

 Initial architecture

- When we create the architecture we usually make some large effort in the

beginning, covering a lot of functionality.

- Not so clearly connected to requirements.

- Should be included in the “real” document as it is implemented to ensure

traceability.

- If necessary introduce system stories. Good exercise to motivate design.

23

© Addalot Consulting AB - All rights reserved

Compared to ASPICE requirements, SYS4-5

 System Integration and Integration Test SYS.4.BP7: Establish bidirectional

traceability. Establish bidirectional traceability between elements of the system

architectural design and test cases included in the system integration test

specification.

- Establish bidirectional traceability between test cases included in the system integration test

specification and system integration test results. [OUTCOME 7]

- NOTE 7: Bidirectional traceability supports coverage, consistency and impact analysis.

 System Qualification Test SYS.5.BP5: Establish bidirectional traceability. Establish

bidirectional traceability between system requirements and test cases included in the

system qualification test specification. Establish bidirectional traceability between test

cases included in the system qualification test specification and system qualification

test results. [OUTCOME 5]

- NOTE 2: Bidirectional traceability supports coverage, consistency and impact analysis.

24

© Addalot Consulting AB - All rights reserved

Questions/comments, SYS4-5

 What different “levels/types” of tests do we have?

 Will the indirect linking of test cases to tasks to changes in architecture be

enough?

- Note that if there are many test cases

and changes connected to a task, the

granularity of traceability will be low.

- Can be controlled by splitting tasks

 Requires traceability from architecture to test cases

 Requires traceability to test results: OK since in same excel file.

25

Arch doc

changes

Task

Test cases

© Addalot Consulting AB - All rights reserved

Compared to ASPICE

requirements, SWE1-3

 Software Requirements Analysis SWE.1.BP6: Establish bidirectional traceability.

Establish bidirectional traceability between system requirements and software

requirements. Establish bidirectional traceability between the system architecture and

software requirements. [OUTCOME 6]

- NOTE 8: Bidirectional traceability supports coverage, consistency and impact analysis.

 Software Architectural Design SWE.2.BP7: Establish bidirectional traceability.

Establish bidirectional traceability between software requirements and elements of

the software architectural design. [OUTCOME 5]

- NOTE 6: Bidirectional traceability covers allocation of software requirements to the elements of

the software architectural design.

- NOTE 7: Bidirectional traceability supports coverage, consistency and impact analysis.

 Software Detailed Design and Unit Construction SWE.3.BP5: Establish

bidirectional traceability. Establish bidirectional traceability between software

requirements and software units. Establish bidirectional traceability between the

software architectural design and the software detailed design. Establish bidirectional

traceability between the software detailed design and software units. [OUTCOME 4]

- NOTE 3: Redundancy should be avoided by establishing a combination of these approaches that

covers the project and the organizational needs.

- NOTE 4: Bidirectional traceability supports coverage, consistency and impact analysis.

26

© Addalot Consulting AB - All rights reserved

Questions/comments, SWE1-3

 Same questions as for System architecture if a large architecture document

is established covering a lot of stories/tasks. How to achieve traceability?

 Do we need SW detailed design, or can we use Doxygen?

 Can we implement traceability from SW architecture design to low level

design by making an index of all “modules” in the Architecture document?

27

© Addalot Consulting AB - All rights reserved

Compared to ASPICE

requirements, SWE4-6

 Software Unit Verification SWE.4.BP5: Establish bidirectional traceability. Establish

bidirectional traceability between software units and static verification results.

Establish bidirectional traceability between the software detailed design and the unit

test specification. Establish bidirectional traceability between the unit test

specification and unit test results. [OUTCOME 4]

- NOTE 7: Bidirectional traceability supports coverage, consistency and impact analysis.

 Software Integration and Integration Test SWE.5.BP7: Establish bidirectional

traceability. Establish bidirectional traceability between elements of the software

architectural design and test cases included in the software integration test

specification. Establish bidirectional traceability between test cases included in the

software integration test specification and software integration test results.

[OUTCOME 7]

- NOTE 6: Bidirectional traceability supports coverage, consistency and impact analysis.

 Software Qualification Test SWE.6.BP5: Establish bidirectional traceability.

Establish bidirectional traceability between software requirements and test cases

included in the software qualification test specification. Establish bidirectional

traceability between test cases included in the software qualification test specification

and software qualification test results. [OUTCOME 5]

- NOTE 2: Bidirectional traceability supports coverage, consistency and impact analysis.

28

© Addalot Consulting AB - All rights reserved

Questions/comments, SWE4-6

 Requires both traceability from

- Requirements to test cases and

- Design to test cases

On all levels of design and test

Traceability from Test cases to Test results, i.e. we need to know which test cases

have been run, when and the result.

29

© Addalot Consulting AB - All rights reserved

Some references

Quite well discussed on the web, e.g.:

 http://pagilista.blogspot.be/2012/07/requirements-traceability-in-

agile.html

 https://www.rallydev.com/blog/agile/high-assurance-agile-software-

development-traceability-matrix-examples

 http://fileadmin.cs.lth.se/cs/education/examensarbete/rapporter/2009/20

09-02_rapport.pdf

30

http://pagilista.blogspot.be/2012/07/requirements-traceability-in-agile.html
https://www.rallydev.com/blog/agile/high-assurance-agile-software-development-traceability-matrix-examples
http://fileadmin.cs.lth.se/cs/education/examensarbete/rapporter/2009/2009-02_rapport.pdf

Even-Andre.Karlsson@addalot.se

+46 706 800 533

“Excellent firms don't believe in excellence -

only in constant improvement and change.”

In Search of Excellence - Tom Peters

